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ABSTRACT Oligonucleotide arrays can provide a broad
picture of the state of the cell, by monitoring the expression
level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from
the resulting data sets. Here we report the application of a
two-way clustering method for analyzing a data set consisting
of the expression patterns of different cell types. Gene expres-
sion in 40 tumor and 22 normal colon tissue samples was
analyzed with an Affymetrix oligonucleotide array comple-
mentary to more than 6,500 human genes. An efficient two-
way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high
degree of organization underlying gene expression in these
tissues. Coregulated families of genes clustered together, as
demonstrated for the ribosomal proteins. Clustering also
separated cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns
of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be
of use both in classifying genes into functional groups and in
classifying tissues based on gene expression.

Recently introduced experimental techniques based on oligo-
nucleotide or cDNA arrays now allow the expression level of
thousands of genes to be monitored in parallel (1-9). To use
the full potential of such experiments, it is important to
develop the ability to process and extract useful information
from large gene expression data sets. Elegant methods recently
have been applied to analyze gene expression data sets that are
comprised of a time course of expression levels. Examples of
such time-course experiments include following a develop-
mental process or changes as the cell undergoes a perturbation
such as a shift in growth conditions. The analysis methods were
based on clustering of genes according to similarity in their
temporal expression (5, 6, 9-11). Such clustering has been
demonstrated to identify functionally related families of genes,
both in yeast and human cell lines (5, 6, 9, 11). Other methods
have been proposed for analyzing time-course gene expression
data, attempting to model underlying genetic circuits (12, 13).

Here we report the application of methods for analyzing
data sets comprised of snapshots of the expression pattern of
different cell types, rather than detailed time-course data. The
data set used is composed of 40 colon tumor samples and 22
normal colon tissue samples, analyzed with an Affymetrix
oligonucleotide array (8) complementary to more than 6,500
human genes and expressed sequence tags (ESTs) (14). We
focus here on generally applicable analysis methods; a more
detailed discussion of the cancer-specific biology associated
with this study will be presented elsewhere (D.A.N.and A.J.L.,
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unpublished work). The correlation in expression levels across
different tissue samples is demonstrated to help identify genes
that regulate each other or have similar cellular function. To
detect large groups of related genes and tissues we applied
two-way clustering, an effective technique for detecting pat-
terns in data sets (see e.g., refs. 15 and 16). The main result is
that an efficient clustering algorithm revealed broad, coherent
patterns of genes whose expression is correlated, suggesting a
high degree of organization underlying gene expression in
these tissues. It is demonstrated, for the case of ribosomal
proteins, that clustering can classify genes into coregulated
families. It is further demonstrated that tissue types (e.g.,
cancerous and noncancerous samples) can be separated on the
basis of subtle distributed patterns of genes, which individually
vary only slightly between the tissues. Two-way clustering thus
may be of use both in classifying genes into functional groups
and in classifying tissues based on their gene expression
similarity.

MATERIALS AND METHODS

Tissues and Hybridization to Affymetrix Oligonucleotide
Arrays. Colon adenocarcinoma specimens (snap-frozen in
liquid nitrogen within 20 min of removal) were collected from
patients (D.A.N. and A.J.L., unpublished work). From some of
these patients, paired normal colon tissue also was obtained.
Cell lines used (EB and EB-1) have been described (17). RNA
was extracted and hybridized to the array as described (1, 8).

Treatment of Raw Data from Affymetrix Oligonucleotide
Arrays. The Affymetrix Hum6000 array contains about 65,000
features, each containing ~107 strands of a DNA 25-mer
oligonucleotide (8). Sequences from about 3,200 full-length
human cDNAs and 3,400 ESTs that have some similarity to
other eukaryotic genes are represented on a set of four chips.
In the following, we refer to either a full-length gene or an EST
that is represented on the chip as EST. Each EST is repre-
sented on the array by about 20 feature pairs. Each feature
contains a 25-bp sequence, which is either a perfect match
(PM) to the EST, or a single central-base mismatch (MM). The
hybridization signal fluctuates between different features that
represent different 25-mer oligonucleotide segments of the
same EST. This fluctuation presumably reflects the variation
in hybridization kinetics of different sequences, as well as the
presence of nonspecific hybridization by background RNAs.
Some of the features display a hybridization signal that is many
times stronger than their neighbors (=4% of the intensities are
>3 SD away from the mean for their EST). These outliers
appear with roughly equal incidence in PM or MM features. If
not filtered out, outliers contribute significantly to the reading
of the average intensity of the gene. Because most features

Abbreviation: EST, expressed sequence tag.
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FiG. 1. Correlation between pairs of genes across the 62 tissue

types. O, tumor tissues; 0, normal tissue; line, best fit (least-mean
squares) with correlation coefficient r. (4) Correlation between 60S
ribosomal protein L22 (EST number T47584) and ribosomal protein
L3 (T57630). (B) 60S ribosomal protein L22 and her2 (M11730).
Intensities are a measure of the mRNA concentration with 100
intensity units equal to roughly 10 messages/cell (8). (C) Probability
histogram of correlation coefficients between pairs of genes. All pairs
within the 2,000 genes with highest minimal intensity across the tissues
were used. Dashed line, correlation coefficient for data where identity
of tissues was randomized. Shaded regions, correlation with statistical
significance P < 1073. On average each gene scores such a significant
correlation with about 30 other genes, and such an anticorrelation with
about 10 other genes.

overlap in sequence with their neighbors we used a modified
median filter to eliminate outliers from local neighborhoods of
features, while preserving step-like changes in intensity. The
features were arranged in the order they appear in the EST
sequence, the PM-MM intensities in a moving window of five
features were sorted, and the filtered intensity was given by the
mean of the middle three sorted intensities. The total intensity
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of the EST was given by the mean filtered PM-MM intensity.
To compensate for possible variations between arrays, the
intensity of each EST on an array was divided by the mean
intensity of all ESTs on that array and multiplied by a nominal
average intensity of 50. The data set is available on the web at
http://www.molbio.princeton.edu/colondata.

Correlations of Pairs of Genes. To estimate the statistical
significance of the correlation between genes, the distribution
of correlation coefficients within 10* randomized data sets was
calculated. To control for the difference in mean expression in
the two tissue types, the randomization preserved tissue iden-
tity (normal tissues were randomized with normal tissues, and
tumors with tumors). This type of randomization also was used
to obtain the dashed curve in Fig. 1C. The probability that the
randomized data showed a higher correlation coefficient for
the gene of interest than the nonrandomized data was used as
an estimate of the statistical significance P.

Data Clustering. We used an algorithm, based on the
deterministic-annealing algorithm (18, 19), to organize the
data in a binary tree. To cluster the genes, each gene, k, was
represented by a vector, V%, whose components correspond to
the intensity of the gene in each sample. Each vector was
normalized so that the sum over its components is zero and the
magnitude is one, |V = 1. The genes were split into two
clusters as follows: two cluster centroids C;, j = 1, 2, were
defined. A probability was assigned for belonging to cluster j:
Pi(Vi) = exp(=BVi = Cj*)/%; exp(—B|Vic — Cj). This equa-
tion effectively fits the data with two Gaussians of variance
(2B)~%. The cluster centroids were determined by the self-
consistent equation C; = % Vi Pi(Vi)/2kPj(Vi), which was
solved by iterations. For B = 0 there is only one cluster, C; =
C,. We increased 3 in small steps until two distinct, converged
centroids emerged. Each gene k then was assigned to the
cluster with the larger P;(V). Each of the resulting two clusters
then was separated into two by repeating the same procedure.
The final result was an organization of the genes into a binary
tree. To cluster the tissues the same algorithm was used, where
each tissue, k, was represented as a vector, V}, whose compo-
nents correspond to the intensity of the genes for that tissue.
Note that because of the normalization, the Euclidean distance
between two vectors x and y is related to r, the correlation
coefficient of x and y: r — y> = 2 (1 — 7).

The binary trees obtained by the above procedure were used
to reorganize the matrix of gene expression (Figs. 2 and 3). To
this end, we included a routine that orders the tree branches
in a deterministic way: Each pair of sibling branches was

FiG. 2. Data set of intensities of 2,000 genes in 22
normal and 40 tumor colon tissues. The genes chosen
are the 2,000 genes with highest minimal intensity across
the samples. The vertical axis corresponds to genes, and
the horizontal axis to tissues. Each gene was normalized
so its average intensity across the tissues is 0, and its SD
is 1. The color code used is indicated in the adjoining
scale. (4) Unclustered data set. (B) Clustered data. The
62 tissues are arranged on the vertical axis according to
the ordered tree of Fig. 3. The 2,000 genes are arranged
on the horizontal axis according to their ordered tree.
(C) Unclustered randomized data, where the original

1 data set was randomized (the location of each number
in the matrix was randomly shifted). (D) Clustered

5  randomized data, subjected to the same clustering
algorithm as in B. The data and the clustering program
are available at http://www.molbio.princeton.edu/
colondata.
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FiG. 3. (A) Expanded view of clustered data set of 2,000 genes in 22 normal and 40 tumor colon tissues. The genes chosen are the 2,000 genes
with highest minimal intensity across the samples. Tumor tissues are marked with arrows on the left. Normal tissues are unmarked. Note the
separation of normal and tumor tissues. Thin black vertical arrows on the bottom mark ESTs homologous to ribosomal proteins (see Table 1). Note
that where these genes cluster the arrows group together and resemble a thick arrow. (B) Same as 4 but with EB and EB1 colon carcinoma cell

lines (17) added to the data set (marked with ). Note the clustering of cell lines into a separate group with expression patterns markedly different
from both tumor and normal in vivo tissues.

ordered according to the proximity of their centroids to the
centroid of their parent’s sibling.

The present clustering algorithm is quite efficient. The
computation time scales as the number of objects clustered
times the number of layers in the tree, N log(N), rather than
as N? to N* in commonly used phylogenetic tree construction
algorithms (15). In particular, the method does not require the
computation of all distances between pairs of objects. The
clustering programs are available on the web at http://
www.molbio.princeton.edu/colondata.

RESULTS

Genes with Correlated Expression. The intensity of each
gene across the tissues can be thought of as a pattern that can
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be correlated with expression patterns of other genes. Graph-
ically, correlation between genes can be seen by plotting the
expression of one gene against the expression of another gene,
as demonstrated for two ribosomal proteins in Fig. 14. For this
pair of genes, the correlation coefficient is relatively high (r =
0.73), and the correlation appears to be statistically significant
(P < 1073). Most genes show no significant correlation across
tissues (Fig. 1 B and C). On average, each gene shows a strong
correlation with on the order of 1% of the other genes on the
array (Fig. 1C). A correlation between two genes could result
either from a direct up-regulation of one by the other, or
because they are similarly regulated by the physiological state
of the cell. The correlation between pairs of genes, and an
analogous correlation between pairs of tissues, is the basis for
the two-way data clustering described below.
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Two-Way Data Clustering. To detect groups of correlated
genes and tissues we used a clustering approach to the data set.
Clustering can be thought of as forming a phylogenetic tree of
genes or tissues. Genes are near each other on the “gene tree”
if they show a strong correlation across experiments, and
tissues are near each other on the “tissue tree” if they have
similar gene expression patterns. Technically, we developed a
fast algorithm, based on the deterministic annealing algorithm
(18, 19), which separates a set of objects (genes or tissues) into
two groups, then separates each group into two subgroups, and
so on, until all the objects are arranged on a binary tree.
Because this algorithm yields an unordered tree, we supplied
a method for imposing an order on the tree branches so that
a final, ordered list is obtained. This procedure was applied to
both the genes and the tissues, using the same algorithm. We
then used this two-way ordering of genes and tissues to
rearrange the rows and columns of the data set, so that
correlated genes and tissues are displayed near each other.

To help visualize the data, we plotted it by using a color
code, with gene intensity varying from red (high intensity) to
blue (low intensity) (Fig. 24). The intensity of each gene is
normalized so that the relative variation in intensity is em-
phasized, rather than the absolute intensity. The two-way
clustering method applied to the gene expression data set
yielded a matrix that appears to bear patterns (Figs. 2B and 3).
The areas of high or low intensity correspond to groups of tens
to hundreds of genes whose expression is coordinated to a
substantial degree across groups of tissue samples. In contrast,
the same algorithm applied to a randomized data set (Fig. 2 C
and D) yielded a matrix with little apparent structure. This
difference in patterning reflects the underlying organization of
gene expression in the real data set.

Gene Clusters. The clustering of the genes in the data set
reveals groups of genes whose expression is correlated across

Table 1. Part of the ribosomal protein cluster
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tissue types. For example, 48 ESTs homologous to ribosomal
proteins are represented within the set of 2,000 high-intensity
genes used for the clustering. Most of these genes cluster
together—as expected for genes that are regulated coordi-
nately (Fig. 34, arrows on the bottom). The intensity of the
ribosomal protein genes is relatively low (blue) in the normal
colon tissues and high (red) in the colon tumor tissues. This
finding is in agreement with previous observations (20). In-
terspersed within the ribosomal protein cluster are ESTs
homologous to genes that appear to be related to cellular
metabolism such as an ATP-synthase component and an
elongation factor (Table 1). A more detailed discussion of the
gene clusters will be presented elsewhere (D.A.N. and A.J.L,,
unpublished work).

Tissue Clusters. The clustering algorithm separated tumor
and normal tissues into two distinct clusters (Figs. 3 and 4),
probably primarily because of tissue composition. It is ex-
pected that the normal tissue samples include a mixture of
tissue types, while the tumor samples are biased to epithelial
tissue of the carcinoma. For example, among the 20 genes with
the most statistically significant difference between tumors
and normal tissues (by 7 test), were five muscle genes (not
shown). To obtain a qualitative measure of the muscle content
of each sample, we calculated a muscle index, an average over
the intensity of 17 ESTs in the array that are homologous to
smooth muscle genes (Fig. 4). Normal tissues had high muscle
index, while tumors had low muscle index. The outlying tumors
that clustered with the normal tissues proved to be the five
tumors with the highest muscle index (Fig. 4), perhaps repre-
senting tumor samples with a high content of nonepithelial
tissues. Similarly, the three outlying normal tissues in the
tumor cluster appear to have relatively low smooth-muscle
content. Thus the outliers in the tissue clustering might be
accounted for by tissue composition.

Gene
number Sequence Name
T63591 3’ UTR 60S acidic ribosomal protein PO (human)
R50158 3" UTR Mus musculus 136 ribosomal protein™
T52642 3" UTR Guanylate kinase homolog (vaccinia virus)
R85464 3" UTR ATP synthase lipid-binding protein P2 precursor (human)
X55715 Gene Human Hums3 mRNA for 40S ribosomal protein s3
T52185 3" UTR P17074 40S ribosomal protein
T56934 3" UTR Homo sapiens alpha NAC mRNA (transcriptional coactivator)
T47144 3" UTR JN0549 ribosomal protein YL30
T72879 3’ UTR 60S ribosomal protein L7A (human)
T57633 3" UTR 40S ribosomal protein S8 (human)
T58861 3" UTR 60S ribosomal protein L30E (Kluyveromyces lactis)
T52015 3" UTR Elongation factor 1-gamma (human)
T57619 3" UTR 40S ribosomal protein S6 (Nicotiana tabacum)
T72938 3" UTR Ribosomal protein L10*
R02593 3" UTR 60S acidic ribosomal protein P1 (Polyorchis penicillatus)
T48804 3" UTR 40S ribosomal protein S24 (human)
RO1182 3" UTR 60S ribosomal protein L38 (human)
T61609 3" UTR H. sapiens gene for ribosomal protein Sa, partial cds*
H77302 3’ UTR 60S ribosomal protein (human)
U14971 Gene Human ribosomal protein S9 mRNA, complete cds
H54676 3" UTR 60S ribosomal protein L18A (human)
R86975 3" UTR 40S ribosomal protein S28 (human)
T51560 3" UTR 40S ribosomal protein S16 (human)
H09263 3’ UTR Elongation factor 1-alpha 1 (H. sapiens)
T49423 3" UTR Breast basic conserved protein 1 (human)
T63484 3" UTR Human ornithine decarboxylase antizyme (Oaz) mRNA, complete cds
R02593 3’ UTR 60S acidic ribosomal protein P1 (P. penicillatus)
R22197 3" UTR 60S ribosomal protein L32 (human)
T51496 3" UTR 60S ribosomal protein L37A (human)

UTR, untranslated region.
*BLAST database homologue.
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FiG. 4. Clustering tree for the tissue samples. Tumors (T) and
normal tissue (n) numbered such that tumor and normal tissues with
the same serial number originate from the same patient. Tissue T18 is
a tumor and tissue T19 is a metastasis from the same patient. The
muscle index for each tissue is shown. The muscle index was defined
as the average intensity of the ESTs on the array that are homologous
to the following 17 smooth muscle genes: (D42054) human ORF
(smooth muscle myosin-related), complete cds; (U37019) human
smooth muscle cell calponin mRNA, complete cds; (T61597, R01216,
T78485) caldesmon, smooth muscle (Gallus gallus); (T60155) actin,
aortic smooth muscle (human); (M95787) smooth muscle protein
22-alpha (human); (J02854) myosin regulatory light chain 2, smooth
muscle isoform (human); (T97948) calponin h2, smooth muscle (Sus
scrofa); (R16199, R42761, R50839, H30638, T55741) myosin light
chain kinase, smooth muscle (Gallus gallus); (T96548) actin, gamma-
enteric smooth muscle (human); (X12369) tropomyosin alpha chain,
smooth muscle (human); (H20709) myosin light chain alkali, smooth-
muscle isoform (human). The index is normalized to vary between 0.0
and 1.0. The horizontal distance between tree nodes was determined
by the relative value of B at which splitting occurred in the clustering
algorithm (see Materials and Methods).

Does the separation between tumor and normal tissues
depend on only a few genes (e.g., muscle-specific genes), or is
it reflected in the majority of genes used to cluster? To test this,
we performed clustering by using only a partial gene set, which
lacks the genes that individually best separate tumor and
normal tissues (using a 500-gene set that does not include
genes with the most significant differences between tumors
and normal tissue). Even if one removes the 1,500 genes with
the most significant differences between tumor and normal
tissues, the clustering algorithm still effectively separates tu-
mor from normal tissues (Fig. 5). Thus, clustering distinguishes
tumor and normal samples even when the genes used have a
small average difference between tumor and normal samples.
This finding suggests that for many genes there is a subtle,
systematic difference between tumor and normal samples,
forming a distributed pattern.

Similarly, when cell lines derived from colon carcinoma (ref.
17 and M. Murphy, D.A.N., and A.J.L., unpublished work)
were included in the data set, the clustering algorithm sepa-
rated the cell lines into a cluster of their own, which is distinct
from the colon tumor tissue samples (Fig. 3B, stars). The
cell-line cluster was placed closer to the tumors than the
normal tissue. Note that including the cell line tissues modifies
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F1G. 5. Separation of tumor and normal tissues by clustering over
a set of 500 genes. Genes were sorted by statistical significance (¢ test)
of the difference in normal and tumors. Tissues were clustered by using
awindow of 500 genes selected from the sorted genes. The vertical axis
denotes the fraction of tumors in the tumor rich cluster (|7 — N|/(T
+ N)where N and T are the number of normal, tumor tissues). Dashed
line indicates separation in a randomized data set. The horizontal axis
denotes the starting point of the 500-gene window, so that at the
left-hand side the most significant 500 genes are used, and at the right
the least significant 500 genes.

the patterns obtained by clustering, because the expression
patterns in the cell lines is so markedly different than either the
tumor or normal in vivo tissues. the ribosomal proteins still
cluster, with their relative intensity low in normal tissue, high
in tumors, and very high in cell lines.

DISCUSSION

This work reports the application of techniques that proved
useful in analyzing a large gene expression data set. A fast
two-way clustering algorithm was developed to help identify
families of genes and tissues based on expression patterns in
the data set. Recent work demonstrated that genes of related
function could be grouped together by clustering according to
similar temporal evolution under various conditions (5, 6,
9-11). Here, it was demonstrated that gene grouping also
could be achieved on the basis of variation between tissue
samples from different individuals. Further, it was demon-
strated that clustering of the tissues could detect differences
between tumors of epithelial origin and muscle-rich normal
tissue samples, even when the genes with significant bias
(tumor-normal differences) were removed from the data set.
Similarly, colon tumor cell lines were readily distinguished
from in vivo colon tumors. Displaying the data with both
samples and genes clustered revealed wide-scale patterns that
hint at an extensive underlying organization of gene expression
in these tissues.

It is worth noting that although the data-set was designed for
studying colon tumors, the present analysis appears to allow
access to additional information that may be relevant to the
general regulation circuitry of the cell. Clustering can be thought
of as a tool for reducing the dimensionality of the system. Instead
of using thousands of gene intensities to describe the state of a
tissue, one might, as a first approximation, use only the mean
intensity of a few large clusters of genes (11). Clustering methods
thus may help supply some of the basic elements for a compact,
coarse-grained description of the state of the cell.

Finally, this study highlights the importance of improving
tissue purity in the collection of in vivo samples. This method
will allow a more reliable classification of tumors on the basis of
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gene expression patterns and will help characterize the differ-
ences between normal and tumor expression patterns. Because it
appears likely that genomic instability in cancers can optimize
gene expression for cell growth, the differences between normal
and tumor expression patterns might help us understand what is
being selected for as cancerous tissues evolve.

We thank S. Friend, S. Leibler, D. Lockhart, M. Mittman, R.
Stoughton, and E. Tom for discussions, and J. Pipas for discussions and
comments on the manuscript. We acknowledge the contribution of the
Cooperative Human Tissue Network in providing tissue samples.
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